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This shows that the expressions in the parentheses must be the Fourier coefficients b,, of
f(x); that is, by (4) in Sec. 11.3,

« .. nmb 2 ° . nmx
b, = A, sinh — = — f f(x) sin dx.
a a Jy a
From this and (16) we see that the solution of our problem is
z = nmx niy
a17) u(x, y) = >, uy(x, y) = > A¥ sin —— sinh —
n=1 n=1 a g
where
as) A% 2 (i sin 2T 4
= - x) sin — dx.
™ = 4 sinh (nmwbla) Jo g

We have obtained this solution formally, neither considering convergence nor showing
that the series for u, u,,. and u,, have the right sums. This can be proved if one assumes
that f and f' are continuous and f” is piecewise continuous on the interval 0 = x = a.
The proof is somewhat involved and relies on uniform convergence. It can be found in
[C4] listed in App. 1.

Unifying Power of Methods. Electrostatics, Elasticity

The Laplace equation (14) also governs the electrostatic potential of electrical charges in
any region that is free of these charges. Thus our steady-state heat problem can also be
interpreted as an electrostatic potential problem. Then (17), (18) is the potential in the
rectangle R when the upper side of R is at potential f(x) and the other three sides are
grounded.

Actually, in the steady-state case, the two-dimensional wave equation (to be considered
in Secs. 12.7, 12.8) also reduces to (14). Then (17), (18) is the displacement of a rectangular
elastic membrane (rubber sheet, drumhead) that is fixed along its boundary, with three
sides lying in the xy-plane and the fourth side given the displacement f(x).

This is another impressive demonstration of the unifying power of mathematics. It
illustrates that entirely different physical systems may have the same mathematical model
and can thus be treated by the same mathematical methods.

1. WRITING PROJECT. Wave and Heat Equations. 2. (Eigenfunctions) Sketch (or graph) and compare the

Compare the two PDEs with respect to type, general first three eigenfunctions (8) with B, = 1, ¢ = 1,
behavior of eigenfunctions, and kind of boundary and L= afort=0,0.2 04,0.6,0.8, 1.0.

initial conditions and resulting practical problems. Also 3. (Decay) How does the rate of decay of (8) with fixed
discuss the difference between Figs. 288 in Sec. 12.3 n depend on the specific heat, the density, and the

and 292. thermal conductivity of the material?



SEC. 125 Heat Equation: Solution by Fourier Series

4. If the first eigenfunction (8) of the bar decreases to half
its value within 10 sec, what is the value of the
diffusivity?

5-9| LATERALLY INSULATED BAR

A laterally insulated bar of length 10 cm and constant
cross-sectional area 1 cm?, of density 10.6 gm/cm?, thermal
conductivity 1.04 cal/(cm sec °C), and specific heat
0.056 cal/(gm °C) (this corresponds to silver, a good heat
conductor) has initial temperature f(x) and is kept at 0°C
at the ends x = 0 and x = 10. Find the temperature u(x, ?)
at later times. Here, f(x) equals:

5. f(x) = sin 0.47x

6. f(x) = sin 0.17x + % sin 0.27x

7. f(x) = 02xif 0 < x < 5 and O otherwise

8. f(x) =1 — 02]x — 5|

9, f(x) = xif 0 <x <25, f(x) =25if2.5 <x <75,

f(x) =10 —xif 75 <x < 10

10. (Arbitrary temperatures at ends) If the ends x = 0
and x = L of the bar in the text are kept at constant
temperatures U; and Us,, respectively, what is the
temperature uy(x) in the bar after a long time
(theoretically, as r — )? First guess, then calculate.

11. In Prob. 10 find the temperature at any time.

12. (Changing end temperatures) Assume that the ends
of the bar in Probs. 5-9 have been kept at 100°C for a
long time. Then at some instant, call it + = 0, the
temperature at x = L is suddenly changed to 0°C and
kept at 0°C, whereas the temperature at x = 0 is kept
at 100°C. Find the temperature in the middle of the bar
at t = 1, 2, 3, 10, 50 sec. First guess, then calculate.

BAR UNDER ADIABATIC CONDITIONS

“Adiabatic” means no heat exchange with the

neighborhood, because the bar is completely insulated, also

at the ends. Physical Information: The heat flux at the ends
is proportional to the value of du/dx there.

13. Show that for the completely insulated bar,
u(0,1) = 0, uy(L, t) = 0, u(x, t) = f(x) and separation
of variables gives the following solution, with A,, given
by (2) in Sec. 11.3.

o
u(x, t) = Ag + E A,, cos % g~ (en Ly
n=1

Find the temperature in Prob. 13 with L = r,

¢ =1, and

14. f(x) = x 15. f(x) = 1

16. f(x) = 0.5 cos 4x 17, f(x) = w2 — x2
18. f(x) =37 — |x — 47|  19. f(x) = (x — im)?

20. Find the temperature of the bar in Prob. 13 if the left
end is kept at 0°C, the right end is insulated, and the
initial temperature is Uy = const.
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21. The boundary condition of heat transfer
(19) —u,(m, t) = klu(m, t) — ug)

applies when a bar of length 7 with ¢ = 1 is laterally
insulated, the left end x = O is kept at 0°C, and at the
right end heat is flowing into air of constant
temperature uy. Let k = 1 for simplicity, and uy = 0.
Show that a solution is u(x, ) = sin px e~ Pt where
p is a solution of tan pm = —p. Show graphically
that this equation has infinitely many positive solutions
P1s P2s P3s "+, where p,, > n — 3 and

lim (p, —n + %) = 0. (Formula (19) is also known
Nn—oo

as radiation boundary condition, but this is
misleading; see Ref. [C3], p. 19.)

22. (Discontinuous f) Solve (1), (2), (3) with L = «
and f(x) = Uy = const (# 0) if 0 < x < 7/2,
fx)=0if7/2 < x < 7.

23. (Heat flux) The heat flux of a solution u(x, ) across
x = 0 is defined by ¢(1) = —Ku,(0, 1). Find ¢(z) for
the solution (9). Explain the name. Is it physically
understandable that ¢ goes to 0 as t — =?

OTHER HEAT EQUATIONS

24, (Bar with heat generation) If heat is generated at a

" constant rate throughout a bar of length L = 7 with
initial temperature f(x) and the ends at x = 0 and
7 are kept at temperature O, the heat equation is
u, = cu,, + H with constant H > 0. Solve this
problem. Hint. Setu = v — Hx(x — m)/(2c?).

25. (Convection) If heat in the bar in the text is free to
flow through an end into the surrounding medium
kept at 0°C, the PDE becomes v, = ¢?v,,, — Bv. Show
that it can be reduced to the form (1) by setting
v(x, t) = u(x, Hyw(r).

26. Consider v, = c?v,, — v (0 <x <L, t > 0),
v(0,7) = 0,v(L, 1) = 0, v(x, 0) = f(x), where the term
—v models heat transfer to the surrounding medium
kept at temperature 0. Reduce this PDE by setting
v(x, t) = u(x, t)w(r) with w such that u is given by (9),
(10).

27. (Nonhomogeneous heat equation) Show that the
problem modeled by

U, — c%uy, = Ne %

and (2), (3) can be reduced to a problem for the
homogeneous heat equation by setting

ulx, t) = v(x, ) + wx)

and determining w so that v satisfies the homogeneous
PDE and the conditions v(0, #) = v(L, 1) = 0,
v(x, 0) = f(x) — w(x). (The term Ne ™ ** may represent
heat loss due to radioactive decay in the bar.)
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28. (Laplace equation) Find the potential in the rectangle

29.

30.

0 =x = 20,0 = y = 40 whose upper side is kept at
potential 220 V and whose other sides are grounded.
Find the potential in the square 0 =x =2, 0=y =2
if the upper side is kept at the potential sin $7rx and the
other sides are grounded.

CAS PROJECT. Isotherms. Find the steady-state
solutions (temperatures) in the square plate in Fig. 294
with @ = 2 satisfying the following boundary
conditions. Graph isotherms.

(a) u = sin 7x on the upper side, O on the others.
(b) u = 0 on the vertical sides, assuming that the other
sides are perfectly insulated.

(¢) Boundary conditions of your choice (such that the
solution is not identically zero).

y

_] o o Va X
Square plate

Z& (Heat flow in a plate) The faces of the thin square

plate in Fig. 294 with side a = 24 are perfectly
insulated. The upper side is kept at 20°C and the other
sides are kept at 0°C. Find the steady-state temperature
u(x, y) in the plate.

32. Find the steady-state temperature in the plate in Prob.

31 if the lower side is kept at Uy°C, the upper side at
U,°C, and the other sides are kept at 0°C. Hint: Split
into two problems in which the boundary temperature
is 0 on three sides for each problem.

33. (Mixed boundary value problem) Find the steady-

state temperature in the plate in Prob. 31 with the upper
and lower sides perfectly insulated, the left side kept
at 0°C, and the right side kept at f(y)°C.

34. (Radiation) Find steady-state temperatures in the

rectangle in Fig. 293 with the upper and left sides
perfectly insulated and the right side radiating into a
medium at 0°C according to u,(a, y) + hu(a, y) = 0,
h > 0 constant. (You will get many solutions since no
condition on the lower side is given.)

35. Find formulas similar to (17), (18) for the temperature

in the rectangle R of the text when the lower side of R
is kept at temperature f(x) and the other sides are kept
at 0°C.

Heat Equation: Solution by
Fourier Integrals and Transforms

Our discussion of the heat equation

) du o 9%u
b b iy
ot ax?

in the last section extends to bars of infinite length, which are good models of very long
bars or wires (such as a wire of length, say, 300 ft). Then the role of Fourier series in the
solution process will be taken by Fourier integrals (Sec. 11.7).

Let us illustrate the method by solving (1) for a bar that extends to infinity on both
sides (and is laterally insulated as before). Then we do not have boundary conditions, but
only the initial condition
@) u(x, 0) = f(x) (—00 < ¥ < ®)
where f(x) is the given initial temperature of the bar.

To solve this problem, we start as in the last section, substituting u(x, 1) = F(x)G(t)
into (1). This gives the two ODEs

3) F"+ p?2F =0 [see (5), Sec. 12.5]
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